VINNITSA NATIONAL AGRARIAN UNIVERSITY

STAGE 1

We simplify the electric circuit to the simplest

The simplest is an electric circuit consisting of a power source with one equivalent resistance connected to its terminals

AN EXAMPLE OF SIMPLIFYING AN ELECTRIC CIRCUIT

$$
R_{5}=R_{2}+R_{3}
$$

AN EXAMPLE OF SIMPLIFYING AN ELECTRIC CIRCUIT

$$
R_{6}=\frac{R_{5} \cdot R_{4}}{R_{5}+R_{4}}
$$

AN EXAMPLE OF SIMPLIFYING AN ELECTRIC CIRCUIT

STAGE 2

Step by step we return to circles with an intermediate simplification

Importantly!!!

In each intermediate circuit, for all elements of the circuit in which the part of the circuit with unknown currents (voltages) is "hidden", it is necessary to have a known pair: the through them and the voltage at their term

AN EXAMPLE OF A STEP RETURN

$$
I_{l}=\frac{E}{R_{\text {ers }}} \quad U_{\text {eк }}=E
$$

AN EXAMPLE OF A STEP RETURN

$$
\begin{aligned}
& I_{2}=\frac{U_{6}}{R_{5}} \\
& I_{3}=\frac{U_{6}}{R_{4}}
\end{aligned}
$$

AN EXAMPLE OF CALCULATING A CIRCUIT WITH TWO POWER SOURCES

Example
Calculate currents into circuit, if:
$\mathrm{R}_{1}=5 \mathrm{Om}$
$\mathrm{R}_{2}=10 \mathrm{Om}$
$\mathrm{R}_{3}=15 \mathrm{Om}$
$\mathrm{E}_{1}=60 \mathrm{~V}$
$\mathrm{E}_{2}=30 \mathrm{~V}$

CALCULATION OF THE CURRENT GIVEN BY THE FIRST POWER SOURCE

$$
\begin{aligned}
& I_{1}=\frac{E_{1}}{R_{1}+R_{2}+R_{3}}= \\
& =\frac{60}{5+10+15}=2(A)
\end{aligned}
$$

CALCULATION OF THE CURRENT PROVIDED BY THE SECOND POWER SOURCE

$$
\begin{aligned}
& I_{2}=\frac{-E_{2}}{R_{1}+R_{2}+R_{3}}= \\
& =\frac{-30}{5+10+15}=-1(\mathrm{~A})
\end{aligned}
$$

CALCULATION OF THE TOTAL CURRENT

TASK

The circuit section AB consists of identical conductors with a resistance of 5 Ohms. Calculate the resistance of section AB accordance with the given electric circuit.

CONVERTING A "TRIANGLE" TO A "STAR"

CONVERTING A "STAR" TO A "TRIANGLE"

