

CALCULATION OF ELECTRICAL CIRCUITS BY KIRCHHOFF'S RULES
by Associate Professor V. Hraniak

FIRST KIRCHHOFF'S RULE

The algebraic sum of the currents in any circuit node is ZERO
in other words
The sum of the currents entering the node is equal to the sum of the currents leaving it

$$
I_{1}+I_{3}+I_{4}=I_{2}
$$

SECOND KIRCHHOFF'S RULE

The algebraic sum of EMF (electromotive force) in a closed loop is equal to the algebraic sum of the voltage drops on the resistances of this loop. in other words
The sum of EMF taking into account the sign (if the direction of EMF coincides with the selected direction of the current, then " + ", if it is opposite to it, then "-") is equal to the sum of products taking into account the sign (if the direction of EMF coincides with the selected dir of of

SECOND KIRCHHOFF'S RULE (EXAMPLE)

$$
E_{1}-E_{3}=I_{1} \cdot R_{1}-I_{2} \cdot R_{2}-I_{2} \cdot R_{5}-I_{3} \cdot R_{3}+I_{4} \cdot R_{4}
$$

PECULIARITIES OF COMPILING A SYSTEM OF EQUATIONS ACCORDING TO KIRCHHOFF'S RULES

1. The number of system equations is equal to the number of unknown currents.
2. According to first Kirchhoff's rule, the number of equations that is " 1 " less than the number of nodes in the circle is formed.
3. The rest of the equations are formed according to second Kirchhoff's rule for a system of independent loops formed in a circle.

EXAMPLE

Condition:
$\mathrm{E}_{1}=60 \mathrm{~V}$
$\mathrm{E}_{3}=20 \mathrm{~V}$
$\mathrm{R}_{1}=15 \mathrm{Ohm}$
$\mathrm{R}_{2}=10 \mathrm{Ohm}$
$\mathrm{R}_{3}=20 \mathrm{Ohm}$
$\mathrm{R}_{4}=10$ Ohm

LET'S SET THE DIRECTIONS OF THE CURRENTS AND COMPLETE A SYSTEM OF INDEPENDENT CIRCUITS

COMPLETE THE SYSTEM OF EQUATION

Equation 1
(1 rule, up node)
$I_{1}+I_{3}=I_{2}$
Equation 2
(2 rule, 1 loop)

$$
E_{l}=I_{1} \cdot R_{1}+I_{2} \cdot\left(R_{2}+R_{3}\right)
$$

Equation 3
(2 rule, 2 loop)

$$
E_{1}-E_{3}=I_{1} \cdot R_{l}-I_{3} \cdot R_{4}
$$

CALCULATION OF THE SYSTEM OF EQUATION

$$
\left\{\begin{array}{l}
I_{1}+I_{3}=I_{2}, \\
E_{1}=I_{1} \cdot R_{1}+I_{2} \cdot\left(R_{2}+R_{3}\right), \\
E_{1}-E_{3}=I_{1} \cdot R_{1}-I_{3} \cdot R_{4} .
\end{array}\right.
$$

let's substitute the numbers into the system of equations

$$
\left\{\begin{array}{l}
I_{1}+I_{3}=I_{2}, \\
I_{1} \cdot 15+I_{2} \cdot(10+20)=60, \\
I_{1} \cdot 15-I_{3} \cdot 10=60-20 .
\end{array}\right.
$$

CALCULATION OF THE SYSTEM OF EQUATION

$$
\left\{\begin{array}{l}
I_{1}+I_{3}=I_{2}, \\
I_{1} \cdot 15+I_{2} \cdot 30=60, \\
I_{1} \cdot 15-I_{3} \cdot 10=40 .
\end{array}\right.
$$

from the second equation

$$
I_{2}=\frac{60-15 \cdot I_{1}}{30}=2-0,5 \cdot I_{1}
$$

from the third equation

$$
I_{3}=\frac{15 \cdot I_{1}-40}{10}=1,5 \cdot I_{1}-4
$$

CALCULATION OF THE SYSTEM OF EQUATION

let's substitute I2 and I3 in the first equation

$$
I_{1}+1,5 \cdot I_{1}-4=2-0,5 \cdot I_{1}
$$

we will move the terms that are multiplied by I_{1} to the left, and those that are not multiplied to the right

$$
I_{1}+1,5 \cdot I_{1}+0,5 \cdot I_{1}=2+4
$$

let's add similar terms

$$
3 \cdot I_{1}=6
$$

CALCULATION OF THE SYSTEM OF EQUATION

let's calculate I_{1}

$$
I_{1}=\frac{6}{3}=2(A)
$$

let's calculate I_{2}

$$
I_{2}=2-0,5 \cdot I_{1}=2-0,5 \cdot 2=2-1=1(A)
$$

let's calculate I_{3}

$$
I_{3}=1,5 \cdot I_{1}-4=1,5 \cdot 2-4=3-4=-1(A)
$$

(independent work)

Complete a system of equations according to Kirchhoff's rules

