

METHOD OF LOOP CURRENTS

It is advisable to use the method of loop currents if the number of equations according to Kirchhoff's second rule is less than the number of equations according to the first rule.
The essence of the method is that instead of currents in the branches, new variables are introduced - closed currents that conditionally pass through the branches of independent loops. These currents are called loop currents and their number is less than the number of branch currents.
The convenience of this method also lies in the fact that its system of equations has a unified form for any circle scheme.

In the general case, the system of equations for n loops has the form:

$$
\begin{aligned}
& \underline{Z}_{11} \underline{J}_{1}+\underline{Z}_{12} \underline{J}_{2}+\underline{Z}_{13} \underline{J}_{3}+\ldots+\underline{Z}_{1 n} \underline{J}_{n}=\underline{E}_{11} \\
& \underline{Z}_{21} \underline{J}_{1}+\underline{Z}_{22} \underline{J}_{2}+\underline{Z}_{23} \underline{J}_{3}+\ldots+\underline{Z}_{2 n} \underline{J}_{n}=\underline{E}_{22}
\end{aligned}
$$

$$
\underline{Z}_{n 1} \underline{J}_{1}+\underline{Z}_{n 2} \underline{J}_{2}+\underline{Z}_{n 3} \underline{J}_{3}+\ldots+\underline{Z}_{n n} \underline{J}_{n}=\underline{E}_{n n} .
$$

EXAMPLE

For the circle shown in the figure, complete a system of equations using the method of loop currents.

There are four independent loops in the circle. Let's set the direction of the loop currents as shown in the figure, and write the equation for four loops in general form:

$$
\left\{\begin{array}{l}
\underline{Z}_{11} \underline{J}_{1}+\underline{Z}_{12} \underline{J}_{2}+\underline{Z}_{13} \underline{J}_{3}+\underline{Z}_{14} \underline{J}_{4}=\underline{E}_{11} \\
\underline{Z}_{21} \underline{J}_{1}+\underline{Z}_{22} \underline{J}_{2}+\underline{Z}_{23} \underline{J}_{3}+\underline{Z}_{24} \underline{J}_{4}=\underline{E}_{22} \\
\underline{Z}_{31} \underline{J}_{1}+\underline{Z}_{32} \underline{J}_{2}+\underline{Z}_{33} \underline{J}_{3}+\underline{Z}_{34} \underline{J}_{4}=\underline{E}_{33} \\
\underline{Z}_{41} \underline{J}_{1}+\underline{Z}_{42} \underline{J}_{2}+\underline{Z}_{43} \underline{J}_{3}+\underline{Z}_{44} \underline{J}_{4}=\underline{E}_{44}
\end{array}\right.
$$

Let determine all the coefficients:

$$
\begin{aligned}
& \underline{Z}_{11}=r_{1}+r_{5}+j \omega L_{1}-j \frac{1}{\omega C_{4}} . \\
& \underline{Z}_{22}=r_{3}+r_{5}+r_{6}+r_{9}-j \frac{1}{\omega C_{4}}-j \frac{1}{\omega C_{9}}, \\
& \underline{Z}_{33}=r_{3}+j \omega L_{2}+j \omega L_{8}-j \frac{1}{\omega C_{2}}-j \frac{1}{\omega C_{4}}, \\
& \underline{Z}_{44}=r_{9}-j \frac{1}{\omega C_{7}}-j \frac{1}{\omega C_{9}}+j \omega L_{8} . \\
& \underline{Z}_{12}=\underline{Z}_{21}=-\left(r_{5}-j \frac{1}{\omega C_{4}}\right) . \\
& \underline{Z}_{13}=\underline{Z}_{31}=-\left(-j \frac{1}{\omega C_{4}}\right) . \\
& \underline{Z}_{14}=\underline{Z}_{41}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \underline{Z}_{23}=\underline{Z}_{32}=r_{3}-j \frac{1}{\omega C_{4}}, \\
& \underline{Z}_{24}=\underline{Z}_{42}=r_{9}-j \frac{1}{\omega C_{9}}, \\
& \underline{Z}_{34}=\underline{Z}_{43}=-\left(j \omega L_{8}\right),
\end{aligned}
$$

$$
\underline{E}_{11}=\underline{E}_{1}, \underline{E}_{22}=\underline{E}_{3}, \underline{E}_{33}=-\underline{E}_{2}+\underline{E}_{3}, \underline{E}_{44}=0
$$

THE METHOD OF KIRCHHOFF'S RULES

In most tasks of electric circuit analysis, it is possible to choose one of the methods that significantly reduce the rank of the system of equations.

However, there are circles for which calculation is possible only by direct use of Kirchhoff's laws. These are circuits with dependent (controlled) power sources.

Kirchhoff's first rule

$$
\sum_{k=0}^{n} \underline{I}_{k}=0
$$

Kirchhoff's second rule

$$
\sum_{k=0}^{n} \underline{E_{k}}=\sum_{k=0}^{m} \underline{I_{k}} \cdot \underline{Z_{k}}
$$

EXAMPLE

For the circuit in the figure, find all the currents.

$$
\begin{aligned}
& e_{1}(t)=100 \cdot \sin \left(\omega t-20^{\circ}\right) V \\
& e_{2}(t)=150 \cdot \sin \left(\omega t+30^{\circ}\right) V \\
& R_{1}=6 \mathrm{Ohm} \quad X_{2}=6 \mathrm{Ohm} \\
& R_{2}=10 \mathrm{Ohm} \quad X_{3}=4 \mathrm{Ohm} \\
& R_{3}=8 \mathrm{Ohm} \quad X_{4}=12 \mathrm{Ohm} \\
& X_{1}=9 \mathrm{Ohm} \quad k_{1}=0,8 \quad k_{2}=0,5
\end{aligned}
$$

Let's write the expressions for the complete complex resistances of the circuits, assuming that the circuit number coincides with the current number

$$
\begin{aligned}
& \underline{Z}_{1}=R_{1}+j X_{1} \\
& \underline{Z}_{2}=R_{2} \\
& \underline{Z}_{3}=R_{3}-j\left(X_{3}+X_{4}\right) \\
& \underline{Z}_{4}=-j X_{2}
\end{aligned}
$$

System of equations

$$
\left\{\begin{array}{l}
\underline{I}_{1}+\underline{I}_{2}+\underline{I}_{3}=0, \\
\underline{I}+\underline{I}_{4}-\underline{I}_{2}-\underline{I}_{3}=0, \\
\underline{I}_{1} \underline{Z}_{1}-\underline{I}_{2} \underline{Z}_{2}-\underline{I}_{4} \underline{Z}_{4}=\underline{E}_{1}-\underline{E}_{2}, \\
\underline{I}_{2} \underline{Z}_{2}-\underline{I}_{3} \underline{Z}_{3}=\underline{E}_{2}-\underline{E}_{3} .
\end{array}\right.
$$

$$
\underline{E}_{3}=k_{1} \underline{I}_{2} \underline{Z}_{2} \quad I=k_{2} I_{3}
$$

Taking into account dependent power sources

$$
\left\{\begin{array}{l}
\underline{I}_{1}+\underline{I}_{2}+\underline{I}_{3}=0 \\
\underline{I}_{4}-\underline{I}_{2}+\underline{I}_{3}\left(k_{2}-1\right)=0, \\
\underline{I}_{1} \underline{Z}_{1}-\underline{I}_{2} \underline{Z}_{2}-\underline{I}_{4} \underline{Z}_{4}=\underline{E}_{1}-\underline{E}_{2}, \\
\underline{I}_{2} \underline{Z}_{2}\left(k_{1}+1\right)-\underline{I}_{3} \underline{Z}_{3}=\underline{E}_{2} .
\end{array}\right.
$$

We will complete all calculations in the MathCAD. Let's enter the input data.

$$
\begin{aligned}
& \operatorname{Em1}:=100 \quad \beta 1:=-20 \operatorname{deg} \quad \operatorname{Em} 2:=150 \quad \beta 2:=30 \mathrm{deg} \\
& \mathrm{r} 1:=6 \quad \mathrm{r} 2:=10 \quad \mathrm{r} 3:=8 \quad \mathrm{x} 1:=9 \quad \mathrm{x} 2:=6 \\
& \mathrm{x} 3:=4 \quad \mathrm{x} 4:=12 \quad \mathrm{k} 1:=0.8 \quad \mathrm{k} 2:=0.5 \\
& \mathrm{E} 1:=\frac{\mathrm{Em} 1}{\sqrt{2}} \cdot \mathrm{e}^{\mathrm{i} \cdot \beta 1} \quad \mathrm{E} 2:=\frac{\mathrm{Em} 2}{\sqrt{2}} \cdot \mathrm{e}^{\mathrm{i} \cdot \beta 2} \\
& \mathrm{E} 1=66.446-24.184 \mathrm{i} \quad \mathrm{E} 2=91.856+53.033 \mathrm{i} \\
& \mathrm{Z} 1:=\mathrm{r} 1+\mathrm{i} \cdot \mathrm{x} 1 \quad \mathrm{Z} 2:=\mathrm{r} 2 \quad \mathrm{Z} 3:=\mathrm{r} 3-\mathrm{i} \cdot(\mathrm{x} 3+\mathrm{x} 4) \quad \mathrm{Z} 4:=-(\mathrm{i} \cdot \mathrm{x} 2)
\end{aligned}
$$

Based on the system, we enter into MathCAD the matrix of coefficients for unknown currents and the vector of the right parts, after which we find the complex values of the currents.

$$
\begin{aligned}
& A:=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -1 & k 2-1 & 1 \\
Z 1 & -Z 2 & 0 & -\mathrm{Z4} \\
0 & \mathrm{Z} 2 \cdot(\mathrm{k} 1+1) & -\mathrm{Z} 3 & 0
\end{array}\right] \quad \mathrm{B}:=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{E} 1-\mathrm{E} 2 \\
\mathrm{E} 2
\end{array}\right) \\
& \mathrm{J}:=\text { lsolve }(\mathrm{A}, \mathrm{~B}) \quad \mathrm{I} 1:=\mathrm{J}_{0} \quad \mathrm{I} 2:=\mathrm{J}_{1} \quad \mathrm{I} 3:=\mathrm{J}_{2} \quad \mathrm{I} 4:=\mathrm{J}_{3} \\
& \mathrm{I} 1=-0.682-5.038 \mathrm{i} \quad|\mathrm{I} 1|=5.084 \quad \arg (\mathrm{I} 1)=-97.709 \mathrm{deg} \\
& \mathrm{I} 2=3.549+5.354 \mathrm{i} \quad|\mathrm{I} 2|=6.423 \quad \arg (\mathrm{I} 2)=56.464 \mathrm{deg} \\
& \mathrm{I} 3=-2.867-0.316 \mathrm{i} \quad|\mathrm{I} 3|=2.884 \quad \arg (\mathrm{I} 3)=-173.717 \mathrm{deg} \\
& I 4=2.115+5.196 \mathrm{i} \quad|I 4|=5.61 \quad \arg (\mathrm{I} 4)=67.849 \mathrm{deg}
\end{aligned}
$$

Let implement calculations in MathCAD.

$$
\begin{gathered}
\mathrm{E} 3:=\mathrm{k} 1 \cdot \mathrm{I} 2 \cdot \mathrm{Z} 2 \quad \mathrm{E} 3=28.389+42.832 \mathrm{i} \quad|\mathrm{E} 3|=51.386 \quad \arg (\mathrm{E} 3)=56.464 \mathrm{deg} \\
\mathrm{I}:=\mathrm{k} 2 \cdot \mathrm{I} 3 \quad \mathrm{I}=-1.433-0.158 \mathrm{i} \quad|\mathrm{I}|=1.442 \quad \arg (\mathrm{I})=-173.717 \mathrm{deg} \\
\mathrm{Ui}:=\mathrm{I} 4 \cdot \mathrm{Z} 4 \quad \mathrm{Ui}=31.177-12.692 \mathrm{i} \quad|\mathrm{Ui}|=33.662 \quad \arg (\mathrm{Ui})=-22.151 \mathrm{deg} \\
\mathrm{Sd}:=\mathrm{E} 1 \cdot \overline{\mathrm{I} 1}+\mathrm{E} 2 \cdot \overline{\mathrm{I} 2}+\mathrm{E} 3 \cdot \overline{\mathrm{I} 3}-\mathrm{Ui} \cdot \overline{\mathrm{I}} \\
\mathrm{Ssp}:=(|\mathrm{I} 1|)^{2} \cdot \mathrm{Z} 1+(|\mathrm{I} 2|)^{2} \cdot \mathrm{Z} 2+(|\mathrm{I} 3|)^{2} \cdot \mathrm{Z} 3+(|\mathrm{I} 4|)^{2} \cdot \mathrm{Z4} \\
\mathrm{Sd}=634.217-89.257 \mathrm{i} \quad \mathrm{Ssp}=634.217-89.257 \mathrm{i}
\end{gathered}
$$

THANK FOR YOUR ATTENTION!

