VINNITSA NATIONAL AGRARIAN UNIVERSITY
Department of Electric Power Engineering, Electrical Engineering and Electromechanics

METHOD OF NODAL POTENTIALS
by Associate Professor V. Hraniak

THE ESSENCE AND MAIN APPROACHES

When an electric circuit consists of a large number of loops with a small number of nodes, it is advisable to perform its calculation and analysis by the method of nodal potentials (or the method of nodal voltages).

If the number of nodes in the scheme is n, then the number of equations needed to calculate such a circle is equal to $(\mathrm{n}-1)$. The unknown quantities in these equations are the so-called nodal potentials. In accordance with this method, the potential in one of the circuit nodes is assumed to be zero. Other nodes of the circuit will have potentials (nodal voltages $U_{1}, U_{2}, \ldots, U_{n-1}$) relative to the node with zero potential

The current in each branch of the circuit is determined by the voltages applied to the nodes of the branch, their EMF and resistances of the branches.

Next, using the expressions for currents, make equations according to Kirchhoffs second rule for each node of the circuit, excluding the node with zero voltage. The setof such equations forms a system of equations relative to the unknown nodal voltages.

When compiling the equation for any i-th node, you can use the ready-made universal formula:
according to which:

$$
\phi_{\mathrm{i}} \sum_{\substack{j=1 \\ j=i}}^{n} \frac{1}{R_{\mathrm{ij}}}-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\varphi_{\mathrm{j}} \frac{1}{R_{\mathrm{ij}}}\right)=\sum_{\substack{j=1 \\ j=i}}^{n}\left(E_{\mathrm{ij}} \frac{1}{R_{\mathrm{ij}}}\right)
$$

the result of multiplication nodal potential in the i-th node by the sum of the conductances of the branches between the i-th and each of the nodes adjacent to the node, minus the sum of the products of the nodal potentials in each node adjacent i-th node by the conductance of the branch between this node and the i-th, the sum of the products of the EMF in the branch between i -th and each no aracent to i-th (if it is present in this branch) by the conductivity of this branc

The components Eij are taken with a " + " sign if the EMF is directed to the i-th node and with a "-" sign if it is directed from the i-th node. Having solved the system with respect to φ_{i}, it is possible to determine the currents the branches.

Consider the calculation of an electric circuit using this method using the example of the circuit shown in the figure

We arbitrarily number the nodes of the scheme, starting from zero. We take the potential at node No. 0 as zero. Using the given formula, we make equations for other nodes:

Node number 1: $\quad \varphi_{1}\left(\frac{1}{R_{6}}+\frac{1}{R_{4}}+\frac{1}{R_{3}}\right)-\varphi_{2} \frac{1}{R_{3}}-\varphi_{3} \frac{1}{R_{6}}=\left(E_{1}+E_{3}\right) \frac{1}{R_{3}} ;$
Node number 2: $-\varphi_{1} \frac{1}{R_{3}}+\varphi_{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{5}}+\frac{1}{R_{3}}\right)-\varphi_{3} \frac{1}{R_{1}}=\left(-E_{1}-E_{3}\right) \frac{1}{R_{3}}$;
Node number 3: $-\varphi_{1} \frac{1}{R_{6}}-\varphi_{2} \frac{1}{R_{1}}+\varphi_{3}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{6}}\right)=-E_{2} \frac{1}{R_{2}}$

Given the following ratios:

$$
Y=\frac{1}{R}, \quad I=E \frac{1}{R}
$$

the initial formula can be written in the form of the following generalized system of equations:

$$
\left\{\begin{array}{l}
\phi_{1} Y_{11}-\phi_{2} Y_{12}-\ldots-\phi_{n} Y_{1 n}=I_{11} \\
-\phi_{1} Y_{21}+\phi_{2} Y_{22}-\ldots-\phi_{n} Y_{2 n}=I_{22} \\
\ldots \ldots
\end{array}\right.
$$

$$
-\phi_{1} Y_{n 1}-\phi_{2} Y_{n 2}-\ldots+\phi_{n} Y_{n n}=I_{n n}
$$

where Y_{ii} is the own conductance of the i -th node, defined as the sum of the conductances of the branches connected to this node; Y_{ij} is the joint conductivity of the i -th and j -th nodes, defined as the sum of the conductances of the branches 9 Ssimultaneously connected to the i-th and j-th nodes; Iii is the own current of the i-th node, defined as the sum of the products of the EMF on the conductivity of the activ loops connected to the i-th node (in the case when the EMF is directed to the i-th node direction is considered positive, in the other case - negative).

After solving the system of equations relative to the unknowns $\varphi_{1}, \varphi_{2}, \varphi_{3}$, that is, determining their values, we calculate the currents in the circuits.

The branch with nodes 0-1.

The branch with nodes 0-3.

$$
U_{3}=\varphi_{3}-\varphi 4 \quad I R_{2}=E_{2}+U_{3} \quad \Rightarrow \quad I=\left(E_{2}+U_{3}\right) / R_{5} .
$$

The branch with nodes 1-2.

$$
I R_{3}=-E_{3}-E_{1}-U_{2}+U_{1} \Rightarrow I=\left(-E_{3}-E_{1}-U_{2}+U_{1}\right) / R_{3} .
$$

ALGORITHM FOR SOLVING AN ELECTRIC CIRCUIT. BY THE METHOD OF NODAL POTENTIALS

1. Take the potential of one of the nodes as zero (ground it).
2. Compile equations using the method of nodal potentials. The number of equations is equal to the number of remaining nodes.
3. Using any calculation method, solve the system of equations and determine the potentials of the nodes.
4. Based on the found nodal potentials, determine the currents in the branches of the circuit.

EXAMPLE

For the circle depicted in the figure, make a system of equations using the method of nodal potentials

Ground node 4 and write down the system of equations using the nodal potential method in general form:

$$
\left\{\begin{array}{l}
\phi_{1} Y_{11}-\phi_{2} Y_{12}-\phi_{3} Y_{13}=I_{11}, \\
-\phi_{1} Y_{21}+\phi_{2} Y_{22}-\phi_{2} Y_{23}=I_{22}, \\
-\phi_{1} Y_{31}-\phi_{2} Y_{32}+\phi_{3} Y_{33}=I_{33} .
\end{array}\right.
$$

Let's determine the own and joint conductances of nodes and node currents.

$$
\begin{aligned}
& Y_{11}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{5}}, \\
& Y_{22}=\frac{1}{R_{2}}+\frac{1}{R_{4}}+\frac{1}{R_{6}}, \\
& Y_{33}=\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{6}}, \\
& Y_{12}=Y_{21}=\frac{1}{R_{2}}, \\
& Y_{13}=Y_{31}=\frac{1}{R_{1}}, \\
& Y_{23}=Y_{32}=\frac{1}{R_{6}},
\end{aligned}
$$

$$
\begin{aligned}
& I_{11}=E_{1} \frac{1}{R_{1}}-E_{2} \frac{1}{R_{2}}, \\
& I_{22}=E_{2} \frac{1}{R_{2}}, \\
& I_{33}=-E_{1} \frac{1}{R_{i}} .
\end{aligned}
$$

EXAMPLE OF CALCULATION (individual work)

For the circle depicted in the figure, make a system of equations using the method of nodal potentials

$$
\phi_{a}=\phi_{1} \quad \phi_{b}=0
$$

$$
\phi_{1} Y_{11}=I_{11}
$$

$$
Y_{11}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}} \quad I_{11}=\frac{E_{1}}{R_{1}}+\frac{E_{2}}{R_{2}}-\frac{E_{3}}{R_{3}+R_{4}}
$$

CALCULATION OF CURRENTS

$$
\begin{aligned}
& I_{1}=\frac{\phi_{1}-E_{1}}{R_{1}} \\
& I_{2}=\frac{\phi_{1}-E_{2}}{R_{2}} \\
& I_{3}=\frac{\phi_{1}+E_{3}}{R_{3}+R_{4}}
\end{aligned}
$$

THANK FOR YOUR ATTENTION!

