

VINNITSA NATIONAL AGRARIAN UNIVERSITY
Department of General Engineering Sciences and Labour Safety

CALCULATION OF TRANSIENTS IN ELECTRICAL CIRCUITS OF THE SECOND ORDER
by Associate Professor V. Hraniak

ALGORITHM FOR CALCULATING TRANSIENTS IN COMPLEX ELECTRICAL CIRCUITS

1. Compose a system of equations for an electric circuit according to Kirchhoff's rules in an instantaneous form.
2. Based on the system of equations to obtain an inhomogeneous differential equation.
3. Based on the inhomogeneous differential equation to obtain the characteristic equation. Find its solution.
4. Find homogeneous solution (own component).
5. Find particular solution (forced component).

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
W_{L}\left(0_{-}\right)=W_{L}\left(0_{+}\right) \\
W_{C}\left(0_{-}\right)=W_{C}\left(0_{+}\right)
\end{array}\right.
\end{array}\right. \\
& \left\{\begin{array}{l}
i_{L}(0-)=i_{L}\left(0_{+}\right) \\
u_{C}(0-)=u_{C}\left(0^{+}\right)
\end{array}\right.
\end{aligned}
$$

EXAMPLE 1 OF OBTAINING A DIFFERENTIAL EQUATION

$$
\begin{aligned}
& \text { Kirchhoff's first rule : } i_{R}=i_{C}=i_{L}=i \\
& \text { Kirchhoff's second rule : }-v_{S}+v_{R}+v_{C}+v_{L}=0 \rightarrow-v_{S}+i_{R} R+v_{C}+v_{L}=0 \\
& i R+v_{C}(t=0)+\int_{0}^{t} \frac{i\left(t^{\prime}\right)}{C} d t^{\prime}+L \frac{d i}{d t}=v_{S} \\
& \frac{d i}{d t} R+\frac{i}{C}+L \frac{d^{2} i}{d t^{2}}=\frac{d v_{S}}{d t} \rightarrow \frac{d^{2} i}{d t^{2}}+\frac{R d i}{L d t}+\frac{i}{L C}=\frac{d v_{S}}{L d t}: \text { Differential equation for } i \\
& \frac{v_{R}}{R}=i_{C}=C \frac{d v_{C}}{d t}=\frac{v_{S}-v_{C}-v_{L}}{R} \rightarrow C \frac{d v_{C}}{d t}=\frac{v_{S}}{R}-\frac{v_{C}}{R}-\frac{1}{R}\left(L \frac{d}{d t} C \frac{d v_{C}}{d t}\right) \\
& R C \frac{d v_{C}}{d t}=v_{S}-v_{C}-L C\left(\frac{d^{2} v_{C}}{d t^{2}}\right) \\
& L C\left(\frac{d^{2} v_{C}}{d t^{2}}\right)+R C \frac{d v_{C}}{d t}+v_{C}=v_{S}: \text { Differential equation for } v_{C}
\end{aligned}
$$

$a_{2} \frac{d^{2} x(t)}{d t^{2}}+a_{1} \frac{d x(t)}{d t}+a_{0} x(t)=b_{0} f(t) \rightarrow$ Second - order linear ordinary differential equation

EXAMPLE 3 OF OBTAINING A DIFFERENTIAL EQUATION

Kirchhoff's first rule : $i_{R_{1}}=i_{C}+i_{L}$
Kirchhoff's second rule : $-v_{S}+v_{R_{1}}+v_{C}=0 \rightarrow v_{S}=v_{R_{1}}+v_{C}$

HOMOGENEOUS SOLUTION OF SECOND-ORDER DIFFERENTIAL EQUATION
characteristic equation

$$
a \cdot p^{2}+b \cdot p+c=0
$$

Depending on the ratio of components under the sign of the radical, we will have three types of solutions (roots).
$b^{2}<4 \cdot a \cdot c$-complex-conjugate roots;
$b^{2}>4 \cdot a \cdot c-$ roots are real and different;
$b^{2}=4 \cdot a \cdot c$ - roots are real and the same.

The roots can be represented as: $p_{1}=-\delta+j \omega_{0} \quad p_{2}=-\delta-j \omega_{0}$ The transient process of the circuit will be periodic (oscillating)
For example, the transient voltage at the capacitor can be written as

$$
u_{C}(t)=e^{-\delta t}\left(A_{1} \sin \omega_{0} t+A_{2} \cos \omega_{0} t\right)
$$

ROOTS ARE REAL AND DIFFERENT

The transient process will be aperiodic (non-oscillating)
Then the transient voltage on the capacitor can be written as

$$
u_{C}(t)=A_{1} e^{p_{1} t}+A_{2} e^{p_{2} t}
$$

ROOTS ARE REAL AND THE SAME

The transient process is critical. It is a transition between aperiodic and oscillatory processes
In this case, the voltage on the capacitor is written as

$$
u_{C}=\left(A_{1}+A_{2} t\right) e^{p t}
$$

EXAMPLE 1 OF CALCULATING THE TRANSIENT PROCESS IN A BRANCHED CIRCLE OF THE SECOND ORDER

Step 1:

$$
i_{S}=i_{C}=i_{L} \rightarrow \frac{v_{R}}{R_{T}}=i_{L}+i_{C}
$$

$$
-v_{S}+v_{R}+v_{L}+v_{C}=0 \rightarrow v_{R}+v_{L}+v_{C}=v_{S}
$$

$i_{L} R+L \frac{d i_{L}}{d t}+v_{C}(t=0)+\int_{0}^{t} \frac{i_{L}\left(t^{\prime}\right)}{C} d t^{\prime}=v_{S} \rightarrow L \frac{d^{2} i_{L}}{d t^{2}}+R \frac{d i_{L}}{d t}+\frac{i_{L}}{C}=\frac{d v_{S}}{d t}=0$
Step2: $v_{C}\left(t=0^{-}\right)=5 \mathrm{~V}=v_{C}\left(t=0^{+}\right), i_{L}\left(t=0^{-}\right)=0 \mathrm{~A}=i_{L}\left(t=0^{+}\right)$
$i_{L}\left(t=0^{+}\right) R+L \frac{d i_{L}}{d t}\left(t=0^{+}\right)+v_{C}(t=0)=v_{S} \rightarrow 1 \frac{d i_{L}}{d t}\left(t=0^{+}\right)+5 \mathrm{~V}=25 \mathrm{~V} \rightarrow \frac{d i_{L}}{d t}\left(t=0^{+}\right)=20 \mathrm{~A} / \mathrm{s}$

Step3: $L \frac{d^{2} i_{L}}{d t^{2}}+R \frac{d i_{L}}{d t}+\frac{i_{L}}{C}=0 \rightarrow L C \frac{d^{2} i_{L}}{d t^{2}}+R C \frac{d i_{L}}{d t}+i_{L}=0: \frac{1}{\omega_{n}^{2}} \frac{d^{2} x(t)}{d t^{2}}+\frac{2 \zeta}{\omega_{n}} \frac{d x(t)}{d t}+x(t)=K_{S} f(t)$
$\frac{1}{\omega_{n}^{2}}=L C \rightarrow \omega_{n}=\sqrt{\frac{1}{L C}}=\sqrt{\frac{1}{10^{-6}}}=1000(\mathrm{rad} / \mathrm{s}), \frac{2 \zeta}{\omega_{n}}=R C \rightarrow \zeta=\frac{R C \omega_{n}}{2}=\frac{R}{2} \sqrt{\frac{C}{L}}=\frac{5000}{2} \sqrt{\frac{10^{-6}}{1}}=2.5$
\rightarrow Overdamped response
$i_{L}(t)=\alpha_{1} e^{s_{1} t}+\alpha_{2} e^{s_{2} t} \quad$ where $s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}$
Complete Response (forced response $=0$)
$i_{L}(t)=\alpha_{1} e^{\left(-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}\right) t}+\alpha_{2} e^{\left(-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1}\right) t}$
Step4: Using $0 \mathrm{~A}=i_{L}\left(t=0^{+}\right)$and $\frac{d i_{L}}{d t}\left(t=0^{+}\right)=20 \mathrm{~A} / \mathrm{s}$, determine the constants α_{1} and α_{2}
$i_{L}\left(t=0^{+}\right)=0=\alpha_{1}+\alpha_{2}$
$\frac{d i_{L}}{d t}=\alpha_{1}\left(-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}\right) e^{\left(-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}\right) t}+\alpha_{2}\left(-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1}\right) e^{\left(-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1}\right) t}$

$\frac{d i_{i}}{d t}\left(t=0^{+}\right)=20=\alpha_{1}\left(-\zeta \omega_{n}+\omega_{n} \sqrt{\xi^{2}-1}\right)+\alpha_{2}\left(-\zeta \omega_{n}-\omega_{n} \sqrt{\xi^{2}-1}\right)$

$$
a_{2} \frac{d^{2} x(t)}{d t^{2}}+a_{1} \frac{d x(t)}{d t}+a_{0} x(t)=b_{0} f(t) \rightarrow \frac{1}{\omega_{n}^{2}} \frac{d^{2} x(t)}{d t^{2}}+\frac{2 \zeta}{\omega_{n}} \frac{d x(t)}{d t}+x(t)=K_{S} f(t)
$$

where the constants $\omega_{n}=\sqrt{a_{0} / a_{2}}, \zeta=\left(a_{1} / 2\right) \sqrt{1 / a_{0} a_{2}}$ and $K_{S}=b_{0} / a_{0}$ termed the natural frequency, the damping ratio, and the DC gain, respectively.

- The final value of 1 is predicted by the DC gain $K_{S}=1$, which tells us about the steady state.
- The period of oscillation of the response is related to the natural frequency $w_{n}=1$ leads to $\mathrm{T}=2 \mathrm{pi} / \mathrm{w}_{\mathrm{n}}=6.28 \mathrm{sec}$.
- The reduction in amplitude of the oscillation is governed by the damping ratio. With large damping ratio, the response not overshoots (oscillates) but looks like the first order response.
- Damping -> friction effect
$\frac{1}{\omega_{n}^{2}} \frac{d^{2} x(t)}{d t^{2}}+\frac{2 \zeta}{\omega_{n}} \frac{d x(t)}{d t}+x(t)=K_{S} f(t)$
Natural Response
$\frac{1}{\omega_{n}^{2}} \frac{d^{2} x_{N}(t)}{d t^{2}}+\frac{2 \zeta}{\omega_{n}} \frac{d x_{N}(t)}{d t}+x_{N}(t)=0$
$x_{N}(t)=\alpha_{1} e^{s_{1} t}+\alpha_{2} e^{s_{2} t} \quad$ where $s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}$
Case 1: Real and distinct roots. $(\zeta>1) \rightarrow$ Overdamped response
\rightarrow Look like the first order system
$s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}$
Case 2: Real and repeated roots. $(\zeta=1)$
\rightarrow Critically overdamped response \rightarrow Oscillation

$s_{1,2}=-\omega_{n}$
Case 3: Complex roots. $(\zeta<1) \rightarrow$ Underdamped response \rightarrow Oscillation
$s_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}$
Forced Response due to DC (where $f(t)=F): \frac{d x_{F}(t)}{d t} \rightarrow 0$
$\frac{1}{\omega_{n}^{2}} \frac{d^{2} x_{F}(t)}{d t^{2}}+\frac{2 \zeta}{\omega_{n}} \frac{d x_{F}(t)}{d t}+x_{F}(t)=K_{S} f(t) t \geq 0 \rightarrow x_{F}(t)=K_{S} F t \geq 0$
Complete Response
$x(t)=x_{N}(t)+x_{F}(t) \quad \alpha_{1}$ and α_{2} is constants that will be determined by the initial conditions.

