VINNITSA NATIONAL AGRARIAN UNIVERSITY

Department of General Engineering Sciences and Labour Safety

CALCULATION OF TRANSIENTS IN ELECTRICAL CIRCUITS OF THE SECOND ORDER

by Associate Professor V. Hraniak

ALGORITHM FOR CALCULATING TRANSIENTS IN COMPLEX ELECTRICAL CIRCUITS

- 1. Compose a system of equations for an electric circuit according to Kirchhoff's rules in an instantaneous form.
- 2. Based on the system of equations to obtain an inhomogeneous differential equation.
- **3.** Based on the inhomogeneous differential equation to obtain the characteristic equation. Find its solution.
- 4. Find homogeneous solution (own component).
- 5. Find particular solution (forced component).

 $\begin{cases} W_L(\mathbf{0}_-) = W_L(\mathbf{0}_+) \\ W_C(\mathbf{0}_-) = W_C(\mathbf{0}_+) \end{cases}$

 $\begin{cases} i_L(0-) = i_L(0+) \\ u_C(0-) = u_C(0+) \end{cases}$

EXAMPLE 1 OF OBTAINING A DIFFERENTIAL EQUATION

Z

EXAMPLE 2 OF OBTAINING A DIFFERENTIAL EQUATION

Kirchhoff's first rule :
$$i_{R_1} = i_L + i_{R_2} \rightarrow \frac{v_R}{R} = i_L + i_{R_2}$$

+ v_R - Kirchhoff's second rule : $-v_S + v_R + v_L = 0 \rightarrow v_R = v_S - v_L$
 $Kirchhoff's second rule : $-v_S + v_R + v_L = 0 \rightarrow v_R = v_S - v_L$
 $\frac{v_R}{R} = i_L + i_{R_2} \rightarrow \frac{v_S - v_L}{R} = i_L(t = 0) + \int_0^t \frac{v_L(t')}{L} dt' + \frac{v_L}{R}$
 $v_S(t) + \frac{v_L}{V_L} = R_2$
 $v_S - v_L = Ri_L(t = 0) + \int_0^t \frac{Rv_L(t')}{L} dt' + v_L \rightarrow v_S = Ri_L(t = 0) + \int_0^t \frac{Rv_L(t')}{L} dt' + 2v_L$
 $\frac{dv_S}{dt} = \frac{R}{L}v_L + \frac{2dv_L}{dt} \rightarrow 2\frac{dv_L}{dt} + \frac{R}{L}v_L = \frac{dv_S}{dt}$: Differential equation for $v_L$$

X

EXAMPLE 3 OF OBTAINING A DIFFERENTIAL EQUATION

HOMOGENEOUS SOLUTION OF SECOND-ORDER DIFFERENTIAL EQUATION

characteristic equation $a \cdot p^2 + b \cdot p + c = 0$

Depending on the ratio of components under the sign of the radical, we will have three types of solutions (roots).

 $b^2 < 4 \cdot a \cdot c$ - complex-conjugate roots;

 $b^2 > 4 \cdot a \cdot c$ - roots are real and different;

 $b^2 = 4 \cdot a \cdot c$ - roots are real and the same.

COMPLEX-CONJUGATE ROOTS

The roots can be represented as: $p_1 = -\delta + j\omega_0$ $p_2 = -\delta - j\omega_0$ The transient process of the circuit will be periodic (oscillating) For example, the transient voltage at the capacitor can be written as $u_{C}(t) = e^{-\delta t} \left(A_{1} \sin \omega_{0} t + A_{2} \cos \omega_{0} t \right)$ **ROOTS ARE REAL AND DIFFERENT** The transient process will be aperiodic (non-oscillating) Then the transient voltage on the capacitor can be written as $u_{C}(t) = A_{1}e^{p_{1}t} + A_{2}e^{p_{2}t}$ **ROOTS ARE REAL AND THE SAME** The transient process is critical. It is a transition between aperiodic and oscillatory processes In this case, the voltage on the capacitor is written as

 $u_C = \left(A_1 + A_2 t\right) e^{pt}$

EXAMPLE 1 OF CALCULATING THE TRANSIENT PROCESS IN A BRANCHED CIRCLE OF THE SECOND ORDER

Step1: $i_S = i_C = i_L \rightarrow \frac{v_R}{R_T} = i_L + i_C$ $-v_S + v_R + v_I + v_C = 0 \rightarrow v_R + v_L + v_C = v_S$ $i_{L}R + L\frac{di_{L}}{dt} + v_{C}(t=0) + \int_{C}^{t} \frac{i_{L}(t')}{C} dt' = v_{S} \rightarrow L\frac{d^{2}i_{L}}{dt^{2}} + R\frac{di_{L}}{dt} + \frac{i_{L}}{C} = \frac{dv_{S}}{dt} = 0$ Step 2: $v_C(t=0^-) = 5 V = v_C(t=0^+) i_L(t=0^-) = 0 A = i_L(t=0^+)$ $i_{L}(t=0^{+})R + L\frac{di_{L}}{dt}(t=0^{+}) + v_{C}(t=0) = v_{S} \rightarrow 1\frac{di_{L}}{dt}(t=0^{+}) + 5 V = 25V \rightarrow \frac{di_{L}}{dt}(t=0^{+}) = 20A/s$ Step3: $L\frac{d^2i_L}{dt^2} + R\frac{di_L}{dt} + \frac{i_L}{C} = 0 \rightarrow LC\frac{d^2i_L}{dt^2} + RC\frac{di_L}{dt} + i_L = 0: \frac{1}{\omega^2}\frac{d^2x(t)}{dt^2} + \frac{2\zeta}{\omega}\frac{dx(t)}{dt} + x(t) = K_s f(t)$ $\frac{1}{\omega^2} = LC \to \omega_n = \sqrt{\frac{1}{LC}} = \sqrt{\frac{1}{10^{-6}}} = 1000 \, (rad/s), \\ \frac{2\zeta}{\omega} = RC \to \zeta = \frac{RC\omega_n}{2} = \frac{R}{2} \sqrt{\frac{C}{L}} = \frac{5000}{2} \sqrt{\frac{10^{-6}}{1}} = 2.5$ \rightarrow Overdamped response $i_{L}(t) = \alpha_{1}e^{s_{1}t} + \alpha_{2}e^{s_{2}t}$ where $s_{1,2} = -\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2} - 1}$ Complete Response (forced response = 0) $i_{L}(t) = \alpha_{1}e^{\left(-\zeta\omega_{n}+\omega_{n}\sqrt{\zeta^{2}-1}\right)t} + \alpha_{2}e^{\left(-\zeta\omega_{n}-\omega_{n}\sqrt{\zeta^{2}-1}\right)t}$ Step4: Using 0 A = $i_L(t = 0^+)$ and $\frac{di_L}{dt}(t = 0^+) = 20$ A/s, determine the constants α_1 and α_2 $i_{L}(t=0^{+})=0=\alpha_{1}+\alpha_{2}$ $\frac{di_L}{dt} = \alpha_1 \left(-\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1} \right) e^{\left(-\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1} \right)t} + \alpha_2 \left(-\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \right) e^{\left(-\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \right)t}$ $\frac{di_L}{dt}(t=0^+)=20=\alpha_1\left(-\zeta\omega_n+\omega_n\sqrt{\zeta^2-1}\right)+\alpha_2\left(-\zeta\omega_n-\omega_n\sqrt{\zeta^2-1}\right)$

EXAMPLE 2 OF CALCULATING THE TRANSIENT PROCESS IN A BRANCHED CIRCLE OF THE SECOND ORDER

Q

$$a_2 \frac{d^2 x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_0 x(t) = b_0 f(t) \rightarrow \frac{1}{\omega_n^2} \frac{d^2 x(t)}{dt^2} + \frac{2\zeta}{\omega_n} \frac{dx(t)}{dt} + x(t) = K_S f(t)$$

where the constants $\omega_n = \sqrt{a_0/a_2}$, $\zeta = (a_1/2)\sqrt{1/a_0a_2}$ and $K_S = b_0/a_0$ termed the natural frequency, the damping ratio, and the DC gain, respectively.

- The final value of 1 is predicted by the DC gain K_S=1, which tells us about the steady state.
- The period of oscillation of the response is related to the natural frequency w_n=1 leads to T=2 pi/w_n = 6.28 sec.
- The reduction in amplitude of the oscillation is governed by the damping ratio. With large damping ratio, the response not overshoots (oscillates) but looks like the first order response.
- Damping -> friction effect

 $\frac{1}{\omega_n^2} \frac{d^2 x(t)}{dt^2} + \frac{2\zeta}{\omega_n} \frac{dx(t)}{dt} + x(t) = K_S f(t)$ Natural Response $\frac{1}{\omega_n^2} \frac{d^2 x_N(t)}{dt^2} + \frac{2\zeta}{\omega_n} \frac{d x_N(t)}{dt} + x_N(t) = 0$ $x_N(t) = \alpha_1 e^{s_1 t} + \alpha_2 e^{s_2 t}$ where $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$ Case 1: Real and distinct roots. $(\zeta > 1) \rightarrow$ Overdamped response \rightarrow Look like the first order system $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$ Case 2 : Real and repeated roots. $(\zeta = 1)$ \rightarrow Critically overdamped response \rightarrow Oscillation $s_{1,2} = -\omega_n$ Case 3 : Complex roots. $(\zeta < 1) \rightarrow$ Underdamped response \rightarrow Oscillation $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$ Forced Response due to DC (where f(t) = F): $\frac{dx_F(t)}{dt} \rightarrow 0$ $\frac{1}{\omega_r^2} \frac{d^2 x_F(t)}{dt^2} + \frac{2\zeta}{\omega_r} \frac{d x_F(t)}{dt} + x_F(t) = K_S f(t) \ t \ge 0 \rightarrow x_F(t) = K_S F \ t \ge 0$ Complete Response $x(t) = x_N(t) + x_F(t)$ α_1 and α_2 is constants that will be determined by the initial conditions.

