VINNITSA NATIONAL AGRARIAN UNIVERSITY

Department of General Engineering Sciences and Labour Safety

LAPLACE TRANSFORM. OPERATOR SUBSTITUTION SCHEMES

by Associate Professor V. Hraniak

Laplace transform. Operator substitution schemes

DEFINITION

- The Laplace transform is a linear operator that switched a function f(t) to F(s).
- Specifically: $F(s) = \mathcal{L} \{f(t)\} = \int_{0^{-}}^{\infty} e^{-st} f(t) dt.$ where: $s = \sigma + i\omega.$
- Go from time argument with real input to a complex angular frequency input which is complex.

RESTRICTIONS

- There are two governing factors that determine whether Laplace transforms can be used:
 - f(t) must be at least piecewise continuous for $t \ge 0$
 - $|f(t)| \le Me^{\gamma t}$ where M and γ are constants

CONTINUITY

• Since the general form of the Laplace transform is:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_{0^{-}}^{\infty} e^{-st} f(t) \, dt.$$

it makes sense that f(t) must be at least piecewise continuous for $t \ge 0$.

• If f(t) were very nasty, the integral would not be computable.

LAPLACE TRANSFORM THEORY

•General Theory

•Example

$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt = \lim_{\tau \to \infty} \int_0^\tau e^{-st} f(t) dt$

 $f(t) \equiv 1$ $\mathcal{L}(f(t)) = \int_0^\infty e^{-st} 1 dt = \lim_{\tau \to \infty} \left(\frac{e^{-st}}{-s} \bigg|_0^\tau \right)$ $= \lim_{\tau \to \infty} \left(\frac{e^{-s\tau}}{-s} + \frac{1}{s} \right) = \frac{1}{s}$

$$f(t) \equiv e^{t^2}$$
$$\mathcal{L}(f(t)) = \lim_{\tau \to \infty} \int_0^\tau e^{-st} e^{t^2} dt = \lim_{\tau \to \infty} \int_0^\tau e^{t^2 - st} dt = \infty$$

•Convergence

\langle)
$\left. \right\}$	

LAPLACE TRANSFORMS

Some Laplace TransformsWide variety of function can be transformed

•Inverse Transform

 $\mathcal{L}^{-1}(F(s)) = f(t)$

•Often requires partial fractions or other manipulation to find a form that is easy to apply the inverse

TABLE 6.2.1 Elementary Laplace Transforms		
$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	
1. 1	$\frac{1}{s}$, $s > 0$	
2. e^{at}	$\frac{1}{s-a}, \qquad s > a$	
3. t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	
4. t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s>0$	
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$	
6. cos <i>at</i>	$\frac{s}{s^2+a^2}, \qquad s>0$	
7. sinh <i>at</i>	$\frac{a}{s^2-a^2}, \qquad s > a $	
8. cosh <i>at</i>	$\frac{s}{s^2-a^2}, \qquad s > a $	
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	
11. $t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	
13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$	
14. $e^{ct}f(t)$	F(s-c)	
15. $f(ct)$	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	
$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	
17. $\delta(t-c)$	e^{-cs}	
18. $f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$	
19. $(-t)^n f(t)$	$F^{(n)}(s)$	

RESISTOR

iv-relation in the time domain

 $v(t) = R \cdot i(t).$

By operational Laplace transform:

$$L\{v(t)\} = L\{R \cdot i(t)\} = R \cdot L\{i(t)\},$$

$$\Rightarrow V(s) = R \cdot I(s).$$

Physical units: V(s) in volt-seconds, I(s) in ampere-seconds.

INDUCTOR

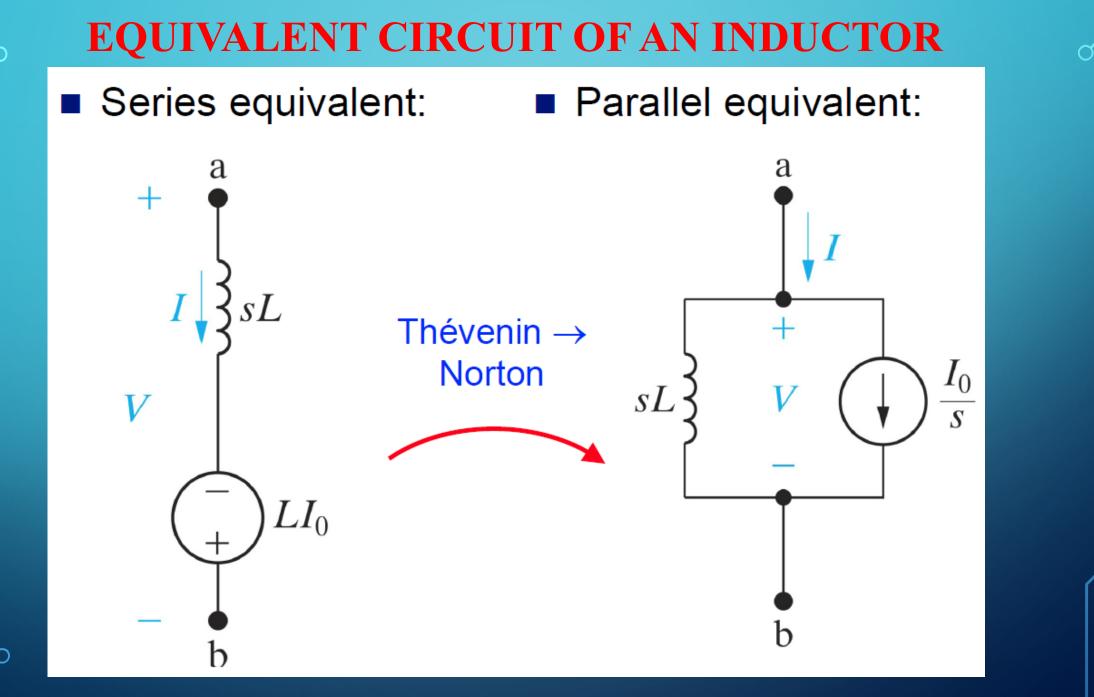
• *iv*-relation in the time domain $v(t) = L \cdot \frac{d}{dt}i(t).$

By operational Laplace transform:

$$L\{v(t)\} = L\{L \cdot i'(t)\} = L \cdot L\{i'(t)\},$$

$$\Rightarrow V(s) = L \cdot [sI(s) - I_0] = sL \cdot I(s) - LI_0$$

initial current



/ {

CAPACITOR

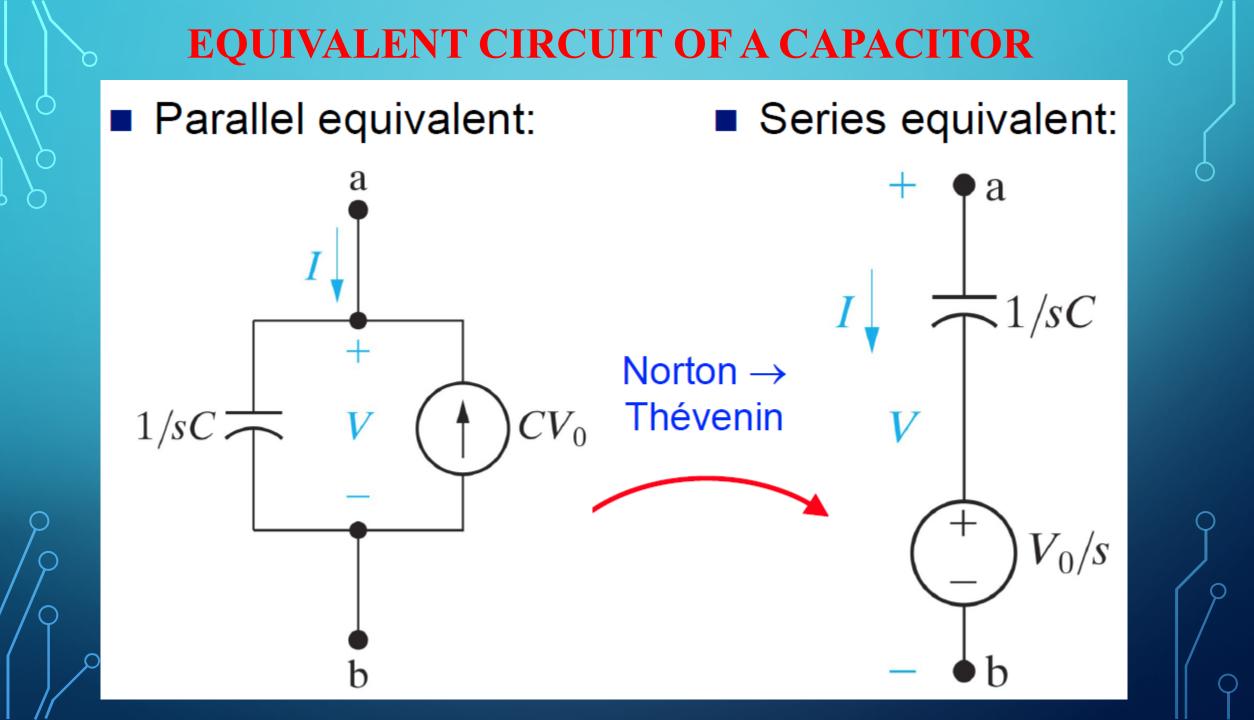
• *iv*-relation in the time domain $i(t) = C \cdot \frac{d}{dt}v(t).$

By operational Laplace transform:

$$L\{i(t)\} = L\{C \cdot v'(t)\} = C \cdot L\{v'(t)\},$$

$$\Rightarrow I(s) = C \cdot [sV(s) - V_0] = sC \cdot V(s) - CV_0,$$

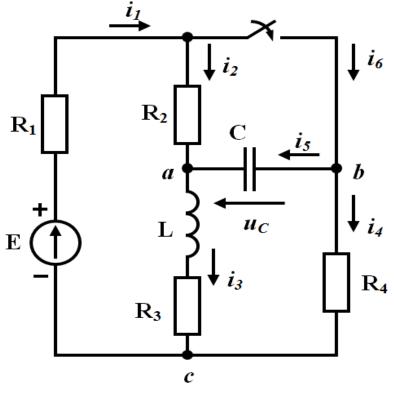
initial voltage



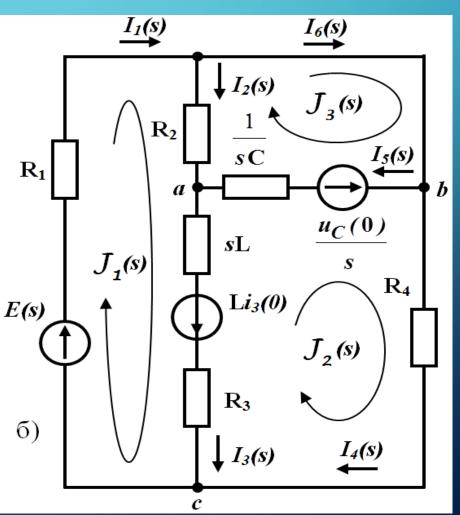
AN EXAMPLE OF CONSTRUCTING AN OPERATOR SUBSTITUTION SCHEME

Original scheme

Substitution scheme



a)



INDEPENDENT WORK

Complete an operator substitution scheme for the proposed circle

